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1. Introduction

The correspondence between IIB string theory on the background AdS5 × S5 and the

conformal N = 4 super Yang-Mills theory [1], is the best understood realization of the

effective string theory description of large-N strongly coupled gauge theories proposed by

’t Hooft in [2]. Indeed, in [1] this effective description was upgraded to an exact duality

between the string theory description and the field theory dynamics. One of the intriguing

implications of this duality is that classical gravitational physics of AdS5 × S5 should be

somehow encoded in the strong coupling regime of the dual gauge field theory.

In a recent work [3], a qualitative description of how the AdS5 × S5 geometry and

locality appear in the strong ’t Hooft coupling regime and large-N limit of N = 4 SYM

was presented, at least as far as the physics of the five sphere at the origin of AdS is

concerned . This derivation was carried by studying 1/8 BPS configurations by means of

a quantum matrix model obtained from the s-wave modes of the N = 4 SYM scalar fields

when compactified on a round S3. This model needs to be quantum corrected by hand

because it is not supersymmetric, but if one assumes the result that would be obtained by

using supersymmetry, in the end this turns into a matrix model for 3 commuting complex

matrices, whose dynamics is described in terms of their eigenvalues. We will discuss this

correction in more detail in the bulk of the paper. These eigenvalues can be effectively

accounted as N bosons in a six dimensional phase space with repulsive interactions, where

the phase space symplectic form is induced from studying dynamical solutions which respect

the given amount of supersymmetry. Considering these bosons as a statistical ensemble and

performing a saddle point approximation, it is possible to obtain a density distribution of

the eigenvalues. Then, in the ground state, bosons turn out to be uniformly distributed in a

5-sphere of the 6 dimensional phase space. This 5-sphere can be directly identified with the

5-sphere of the AdS5 ×S5 geometry. It is also possible to consider non-BPS configurations

in this setup by turning on off-diagonal modes for the matrices. An off-diagonal mode

should involve two eigenvalues and we can depict it with a straight arrow between the

eigenvalues in the droplet. We call these string bits. This way of distinguishing eigenvalues
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having some extra energy can be interpreted as a way of localizing massive string bits in

the geometrical S5.

In this paper we provide quantitative evidence confirming that the picture of the

previous paragraph is correct not just at the qualitative level, but that it can be used

to reproduce some results known by other means. The main result we present is the

calculation of the energy of BMN states [4] to all orders of perturbation theory, summing

only the planar diagrams. Our calculations should be considered as the strong coupling

regime of the field theory. This result has been originally reported in [5] by using a very

different argument. However, some steps on that derivation are not completely justified,

such as the use of the equations of motion of SYM without a complete analysis of contact

terms that could spoil the relations used. In [6], assuming integrability of the dilatation

operator to all perturbative orders, a similar result which was more general was proposed.

In this case the result included two arbitrary constants that had to be fixed. Our results

are extremely efficient at producing the energies of these states, especially when compared

to a two loop calculation, as in [7] and we will see that we are able to reproduce some

of the conjectures made in [6]. Also, one can generalize our results very easily to include

multi-impurity states in the BMN limit also reproducing the square root formulas exactly

without much effort.

The literature on this subject is vast and a complete review of all results that are

related to the subject is prohibitive. A good discussion and a comprehensive collection of

references can be found in Niklas Beisert’s doctoral thesis [8]. A more introductory set of

notes can be found in [9]. We will refer the reader to these works for a complete guide to

the literature.

The paper is organized as follows. In section 2 we review the matrix model of com-

muting matrices describing BPS states in N = 4 SYM and the emergence of the 5-sphere

where the eigenvalues are distributed. We also compute in this section the exact radius

for the sphere. In section 3 we use a saddle point approximation to compute the energy

of BMN states to all orders in perturbation theory. Finally, in section 4 we discuss our

results, the validity of the approximations we make and the possibility of extending similar

computations beyond the BMN limit.

2. Gauged matrix quantum mechanics of commuting matrices

Let us consider a matrix quantum mechanics model for 2d hermitean matrices of rank N

that commute with each other (we can equally consider it as a matrix model for d normal

matrices that commute with each other). As argued in [3] such a model results from

considering either 1/2, 1/4 or 1/8 BPS states in N = 4 SYM compactified on a sphere,

where d = 1, 2, 3 respectively. The BPS states near the vacuum are made of multiple

gravitational quanta, so they can be described in a purely geometric fashion. In this

section we will deal with the systems where the matrices commute without describing how

the other degrees of freedom of the N = 4 SYM decouple. We will address this issue in

the next section.
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Let us label the hermitean matrices by Xa, a = 1, . . . 2d, and the complex normal

matrices by Za = X2a−1 + iX2a, for a = 1, . . . 2d. We require moreover that

[Xa,Xb] = 0 . (2.1)

The model has a gauge invariance under SU(N) transformations, where we act by con-

jugation on all the matrices simultaneously Xa → UXaU−1. It is easy to see that the

constraint (2.1) is invariant under these transformations.

Now we want to solve a gaussian matrix model quantum mechanics associated to these

matrices. We have two options here: we can consider a first order dynamics where Z̄a and

Za are canonically conjugate variables (this is equivalent to stating that X2a−1 and X2a are

canonically conjugate), or we can consider a second order dynamics where we also include

the time derivatives of the matrices (this doubles the number of matrices effectively). The

first option is appropriate if we consider pure BPS states, since in that case ΠZ = iZ̄.

However in our case we want to turn on some commutators between the fields, and thus

go beyond the BPS spectrum. Therefore, we need to consider second order dynamics. The

hamiltonian will look as follows

H =
1

2
tr(Π2

a) +
1

2
tr[(Xa)2] . (2.2)

Because we have a SU(N) action which leaves the model invariant, we can gauge it,

and we can ask about the singlet sector of the matrix model. This is the model we will

concern ourselves with. We can now exploit the fact that the matrices Xa are hermitean

to use a SU(N) transformation to diagonalize any one of the them, let us say X1. Because

the matrices commute, they can be diagonalized simultaneously, so if we diagonalize X1,

we diagonalize all others at the same time.

This reduces the number of degrees of freedom to the eigenvalues of the matrices.

Indeed, for each diagonal component of the matrices (Xa)ii we can associate a 2d vector of

eigenvalues

~xi ' (Xa)ii . (2.3)

In this form we have removed all of the infinitesimal gauge transformations on the X.

However, there are global transformations which permute the eigenvalues of the matrices

at the same time. These gauge transformations permute the vectors ~xi into each other.

Because of this fact, wave functions have to be symmetric under the permutations of the

vectors ~xi.

The system can thus be interpreted as set of N bosons on a space with 2d dimensions

(or a 2d dimensional phase space). If we treat the system classically, we can use a diagonal

ansatz to find solutions of the dynamical system. Under these assumptions we find N free

harmonic oscillators in 2d dimensions, which should be treated as N identical particles

(bosons) on a 2d dimensional harmonic oscillator.

Quantum mechanically, we can not do that immediately. This is because there are

measure factors that arise from the volume of the gauge orbit, and which affect the dynamics

of the system. This measure factor has been computed in [3]. It is given by

µ2 =
∏

i<j

|~xi − ~xj |2 . (2.4)
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and the reduced hamiltonian is

H =
∑

i

− 1

2µ2
∇iµ

2∇i +
1

2
|~xi|2 . (2.5)

We are now interested in studying the ground state wave function of the system and

solving the system in the thermodynamic limit. It turns out that

ψ0 ∼ exp(−
∑

~x2
i /2) , (2.6)

is an eigenfunction of the above hamiltonian. Since it is real and positive it is very likely

that it represents the ground state of the system. This will be orthogonal to other wave

functions of different energy by using the measure µ2. Namely, let ψ̃ be another eigenstate

of H with different energy. Then

∫ N
∏

i=1

d2dxi µ
2ψ̃∗ψ = 0 . (2.7)

Moreover, vevs of observables will be evaluated with µ2, and this in general makes it

hard to do a calculation. It is convenient to perform a similarity transformation and absorb

a factor of µ into the wave functions, so that

ψ̂ = µψ , (2.8)

and the measure factor associated to ψ̂ is the usual
∏

d2dxi, which is N copies of the

measure for a single eigenvalue. Notice that µ is the square root of a function which is

symmetric in the exchange of all the vectors ~xi. So if the particles are bosons with respect

to the measure µ, the particles given by the wave function ψ̂ are also bosons, with the usual

measure for each boson. This regularity, where we have N identical copies of the measure

factor of an individual boson, makes it possible to treat the system thermodynamically,

because we can place all bosons on the same phase space and ask about the distributions

of particles.

Now we want to study the large-N limit of the distribution of these bosons for the

wave function ψ̂. If we square ψ̂, we get a probability distribution on the phase space of

the 2N particles. This is given by

|ψ̂2
0 | ∼ µ2 exp(−

∑

x2
i ) = exp



−
∑

~x2
i + 2

∑

i<j

log |~xi − ~xj|



 . (2.9)

The last term of the right hand side can be interpreted as partition function of a gas of

particles in an external quadratic confining potential, exp(−βH̃), which has logarithmic

repulsion between the particles in 2d dimensions. In the thermodynamic limit N → ∞,

we believe that the bosons will form some type of continuous distribution density ρ on the

phase space of a single particle. The goal for us is to determine the shape of ρ.

For d = 1, this is a Coulomb gas in two dimensions, and the problem can be treated

like a plasma. The particles move to cancel the electric field locally, and they form a filled
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disc of finite radius. If the 2 dimensions are treated as a phase space, the system can be

related to a quantum hall droplet system of free fermions [10].

Now we will consider the case d > 1. The probability distribution is given by

|ψ̂2
0 | ∼ exp

(

−
∫

d2dxρ(x)~x2 +

∫

d2dxd2dyρ(x)ρ(y) log |~x − ~y|
)

. (2.10)

where ρ is positive (the density of bosons) and the total number of particles is N . This

is imposed by the constraint
∫

ρ = N . Now, we want to evaluate the distribution ρ by a

saddle point approximation. The idea is to treat the problem as a variational problem for

ρ where we want to maximize the value of |ψ̂2
0 | which is our probability density. We impose

the condition of the number of particles as a constraint with a Lagrange multiplier. We

find that on the support of ρ

~x2 + C = 2

∫

d2dyρ0(y) log |~x − ~y| . (2.11)

In general, one can show that for even numbers of dimensions the function log |~x − ~y| is

proportional to the Green’s function for the operator (∇2)d, so that operating on both sides

of the equation with this operator one finds that for d > 1, ρ0 vanishes. This is incompatible

with the constraint that
∫

ρ0 = N . This is what we find under the assumption that ρ0 is

a smooth function.

What we find this way is that ρ0 has singular support. Because of spherical symmetry,

one can make a simple ansatz for ρ0 which has singular support. One takes a singular

spherically symmetric distribution at uniform radius r0

ρ0 = N
δ(|~x| − r0)

r2d−1
0 Vol(S2d−1)

, (2.12)

which has been properly normalized. One sees this by transforming the integral
∫

d2dxρ0(x)

to spherical coordinates.

Now we substitute this ansatz into (2.10), and minimize with respect to r0. Since all

particles end up at the same radius r0, the term with
∫

ρ0(x)~x2 is easy to evaluate. We find

that this is equal to Nr2
0. The second term is harder to evaluate. This requires integrating

over relative angles. The term with the logarithm is equal to log[r0(1 − cos θ)] for θ the

relative angle between two points on the sphere. This term can be written as follows

T2(r0) = N2

∫

d2dxd2dyρ(x)ρ(y) log |~x − ~y| (2.13)

= N2

∫

dΩ2d−1dΩ′
2d−1

Vol(S2d−1)2
drdr′δ(r − r0)δ(r

′ − r0) [log(r0) + log(1 − cos θ)] .

Notice that in the above equation, only the first term of the sum will depend on r0, while

the complicated angular integral will be in the second term of the sum. Thus we find that

T2(r0) is equal to

T2(r0) = N2 log(r0) + N2c , (2.14)
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Figure 1: Diagram of forces for the statistical problem

where c is a constant, independent of r0. From here, we need to minimize the function

f(r0) = Nr2
0 − N2 log(r0) − N2c , (2.15)

from where we find that

r0 =

√

N

2
. (2.16)

Notice that this result is independent of d. At first, this seems puzzling, but one can argue

that this is the correct result by calculating the force particle i exerts on particle j in the

direction normal to the sphere.

Looking at the figure 1, if the angle between the particles is 2θ, then the distance

between them is l = 2r0 sin θ. The net force is then 2/l pointed along the straight line

joining particles i and j. The normal to the sphere and this line meet at an angle of

π/2 − θ, and the force normal to the sphere from the particle at angle 2θ (this force is

pointing in the vertical direction in the figure) is then

F ij
v =

cos(π/2 − θ)

2r0 sin θ
=

1

2r0
, (2.17)

which is independent of the angle that particles i, j subtend on the sphere, so long as

they are both located on the sphere. This is why the result does not depend on d: the

angular distribution of particles (how many particles reside at angle 2θ) does not matter

to calculate the net force exerted on particle j.

The upshot of the above calculation is that the distribution of eigenvalues is a singular

distribution of particles. They form a thin shell of a sphere with radius r0 independent of

d > 1. The radius is exactly
√

N/2.

Now, we can use this radius to calculate various expectation values of various operators.

For example, let us take
〈 1

N
tr Xa1 . . . Xa2n

〉

. (2.18)
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This can also be calculated in the saddle point approximation used above. The X variables

can be decomposed into spherical coordinates. In this form we obtain a relation

〈tr Xa1 . . . Xa2n〉 ∼
∫

ρ(x)xa1 . . . xa2n (2.19)

= r2n
0

∫

dΩ5

Vol(S5)
x̂a1 . . . x̂a2n , (2.20)

where the x̂ai are unit vectors. Notice that this scales as Nn. This is the same scaling that

one obtains for one point functions in a single matrix model calculation. This is suggestive

that in the large-N limit vevs can be calculated systematically in a 1/N expansion for this

ensemble. This would be interesting to understand. Notice also that these are symmetric

functions of the ai. Similarly, in a gaussian matrix model for the particle positions ~xi, the

radial integral would factor out, and we would obtain the same angular integrals, which

can therefore be evaluated using Feynman diagrams and gamma functions.

These techniques can also be used to represent excited wave functions. If we take

a complex combination of the fields (labeled as Za above), one can take gauge invariant

holormorphic traces of the Za and build states as follows

ψ̂[n1],[n2],...,[nk] = tr(Z [n1]) tr(Z [n2]) . . . tr(Z [nk])ψ̂0 , (2.21)

where the nk denote multi-indices. These are conjectured to be eigenstates of the hamil-

tonian of energy
∑

j

|nj | , (2.22)

above the ground state, which are moreover approximately orthogonal in the large-N

limit [3]. This follows from identifying these states with the corresponding graviton states

in the N = 4 SYM theory. These give an approximate Fock space of oscillators, one for each

multi-index, on which one can take coherent states. These coherent states can be analyzed

using similar techniques as those used above, and they give wave-like shape deformations

of the five sphere, also with singular support in the embedding space R
6.

3. A saddle point approximation to BMN state energies

Now we want to use the results of the last section to calculate energies of stringy modes

in the CFT. For this, we need an explanation of how the other modes of the SYM theory

decouple to obtain the matrix model of commuting matrices. To do this we need to begin

with the N = 4 SYM theory compactified on a round S3. We obtain the following action

for the scalars

Ssc =

∫

S3

dΩ3 dt tr





6
∑

a=1

1

2
(Dµφa)2 − 1

2
(φa)2 −

6
∑

a,b=1

1

4
g2
Y M [φa, φb][φb, φa]



 . (3.1)

The mass term for the scalars is induced by the conformal coupling of the scalars to the

curvature of the S3, which is chosen to have radius equal to one. This also sets the scale

for time derivatives. With this normalization, the volume of the S3 is 2π2.
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To study BPS configurations, one needs to concentrate on the constant modes of the

φas, while keeping every other mode in the vacuum. This gives an effective reduction to

a gauged matrix quantum mechanical model of six hermitean matrices. This model, after

rescaling the matrices to have a kinetic and quadratic potential term as in the last section,

is of the following form

Ssc =

∫

dt tr





6
∑

a=1

1

2
(DtX

a)2 − 1

2
(Xa)2 −

6
∑

a,b=1

1

8π2
g2
Y M [Xa,Xb][Xb,Xa]



 . (3.2)

We will work with this dimensionally reduced model (slightly modified) in what follows.

The matrices at this point are not required to commute. If we diagonalize X1, and

under the assumption that its eigenvalues are of order
√

N (as calculated in the previous

section, and also as expected from usual matrix integrals), we find that by putting vevs

in the interaction term coming from the commutators, the effective quadratic term for a

generic matrix mode of any of the other Xa is of order g2
Y MN larger than the quadratic

piece associated to the free field result. This is true for matrix components that do not

commute with X1. In the strong ’t Hooft coupling limit this is a large number. This means

that the associated modes (which will be termed off-diagonal) are very massive and can

be integrated out systematically. In a Born-Oppenheimer approximation these are treated

as fast degrees of freedom, while we keep the information of the slow degrees of freedom

exactly. This still leaves us with the configurations where all matrices commute, they

correspond to the matrix model described in the previous section. We also cancel the zero

point energy of the off-diagonal modes by hand, a fact that is expected by supersymmetry,

although the exact cancellation mechanism could be quite involved in the details. This is

a quantum modification of the matrix model, because we are not keeping all the modes

of the SYM theory, but we are keeping the induced quantum effects of the modes that we

have integrated out. In the end, it is a prescription for a particular normal ordering of the

off-diagonal modes, so we do not have to write a new effective action with these corrections

made explicit, and we can work directly with 3.2.

The idea that we will now pursue is that in the strong coupling limit of SYM, to look

at the lowest lying configurations (the ones associated to massless string states), we can

look at the reduced model described in the previous section and study the wave functions

in the reduced model. However, to include massive string states, we also need to consider

turning on these off-diagonal modes to a state which is not the ground state.

To do this systematically, we need to treat a particular off diagonal mode as a fast

degree of freedom attached to two sets of eigenvalues, which are slow degrees of freedom.

The idea is to treat the off-diagonal modes perturbatively, and try to calculate the slow

degrees of freedom according to the commuting matrix model description. In other words,

to a first approximation, we ignore the backreaction that the off-diagonal modes produce

on the geometry, and treat them as modes of a free theory with hamiltonian

Hsb =
∑

i6=j

1

2
(Πa)

j
i (Πa)

i
j +

1

2
ω2

ij(X
a)ji (X

a)ij , (3.3)
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where the frequencies

ω2
ij = 1 +

g2
Y M

2π2
|~xi − ~xj|2 , (3.4)

are evaluated using the classical distribution of eigenvalues of the matrix model discussed

in the previous section. This is to be considered as a test of how well the commuting matrix

model dominates the strong coupling dynamics of the SYM theory.

In deriving (3.3) we have used the fact that the off-diagonal modes between eigen-

values i, j are to be treated orthogonal to the vector ~xi − ~xj , because a component along

that direction is obtained by a gauge transformation on the commuting matrices. This is

explained also in [3].

The above hamiltonian can be regarded as a small perturbation in the large-N ’t Hooft

limit as long as g2
Y M |~xi − ~xj |2 stays finite.

Our approximation in what follows is that we will treat the off-diagonal modes as free

fields, while we keep the information of the distribution of eigenvalues for the slow degrees

of freedom exactly. For this approximation, the dimensional reduction of the matrix model

is a reasonable description of the system for the degrees of freedom we are considering,

since we are ignoring interactions between off-diagonal modes.

When we include the fact that the matrix model is gauged, we need to be careful about

gauge invariance. This means that for each off-diagonal Xj
k mode arriving at eigenvalue j,

we need a second off-diagonal mode leaving it X l
j . This means that the off-diagonal modes

form a closed path between various points on the five-sphere. This is how we would like to

think of a closed string state, where the off-diagonal modes can be labeled string bits. We

will use this convention in what follows.

We now want to calculate the approximate energy of a state consisting of a single string

bit joining two eigenvalues. First, we need a way to identify which pairs of eigenvalues we

are considering, and we also want to control the total angular momentum of the string bit

on the S5, J . To obtain states with the correct value of J , one also needs to turn on the

diagonal matrices to a state that is not the vacuum. This procedure can be considered as

a gravitational dressing of the state to impart it with momentum. For large J , this will

give us precisely the BMN limit [4].

We also need to make sure that we consider physical states of the gauge theory. Gauge

invariance forces us to turn on at least two such oscillators. One from eigenvalues i to

eigenvalues j, and the other from eigenvalue j to eigenvalue i. From our results in the

previous sections, eigenvalues are going to be associated to positions on the five sphere.

Let us now consider a typical BMN-type operator

Ok ∼
J

∑

l=0

exp(ikl/J) tr(Z lY ZJ−lX) . (3.5)

For k 6= 0 this is very similar to the operator

Ok ∼
J

∑

l=0

exp(ikl/J) tr(Z l−1[Y,Z]ZJ−l−1[X,Z]) . (3.6)
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Using the operator state correspondence, we are supposed to relate the diagonal compo-

nents of Z to the eigenvalues we found in the last section for the matrix Z. Let us call

these eigenvalues zi. We do this because the state is almost BPS with energy approximately

equal to J . The presence of the commutators means we are turning on off-diagonal compo-

nents of the fields Y and X. These are to be treated as raising operators in the quantum

mechanical model (3.3); call them Y †i
j and X†k

l for the corresponding matrix modes.

We suggest that one treat the above operator as the following state in the reduced

matrix model:

|ψk〉 ∼
J

∑

l=0

exp(ikl/J)
∑

j,j′

zl
jY

†j
j′ zJ−l

j′ X†j′

j ψ̂0|0〉od , (3.7)

where in the above notation we have explicitly the wave function in the coordinate basis

for the diagonal components of the commuting part of the Xa matrices, and where we have

the off-diagonal modes written as free oscillators acting on the off-diagonal vacuum |0〉od.

Now we want to evaluate the energy of the above state. We do this as follows:

E ∼ 〈ψk|Htotal|ψk〉
〈ψk|ψk〉

. (3.8)

From the hamiltonian (3.3) we see that, after subtracting the ground state energy, each

oscillator will carry an energy

Eosc
jj′ =

√

1 +
g2
Y M

2π2
|~xj − ~xj′ |2 . (3.9)

Adding the energy of the diagonal piece by using (2.22) we get that the total energy is

given by

Etotal = J + 〈Eosc〉 , (3.10)

where we have to evaluate the average energy of the oscillator for the wave function we

considered. This results into a multiple integral

〈Eosc〉 =

∫
∏

dxi|ψ̂0|2
∑

j,j′ |
∑

l exp(ikl/J)zl
jz

J−l
j′ |22

√

1 +
g2

Y M

2π2 |~xj − ~xj′ |2
∫

∏

dxi|ψ0|2
∑

j,j′ |
∑

l exp(ikl/J)zl
jz

J−l
j′ |2

. (3.11)

In the above, we have done the contraction between raising and lowering operators of

the off-diagonal modes as follows

〈ai
ja

†k
l 〉 = δi

lδ
k
l (3.12)

This is what makes the sums run over a single pair of eigenvalues in (3.11). The extra

factor of 2 in the above equation is due to the fact that we have two string bits between

the same pair of eigenvalues in the problem.

Now we can evaluate this integral by a saddle point approximation, similar to what we

did in the previous section. This is done in two steps. First, the integral will be dominated

by configurations which maximize |ψ0|2, which suggest that ~xj and ~xj′ should be located

exactly on the sphere we found in the previous section. Moreover, in the thermodynamic
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limit we can convert the sums
∑

j into integrals
∫

d6xρ0(x), where ρ0(x) is distribution of

eigenvalues (2.12). Thus we reduce the integral to an integral over relative angles associated

to the positions j and j′ on the sphere, where we have identified locations on the sphere

with individual particles in our ensemble of the previous section,

〈Eosc〉 '
|ψ0[ρ0]|2

∫

dΩ5dΩ′
5|

∑

l exp(ikl/J)zlz′J−l|22
√

1 +
g2

Y M

2π2 |~x − ~x′|2
|ψ0[ρ0]|2

∫

dΩ5dΩ′
5|

∑

l exp(ikl/J)zlz′J−l|2
. (3.13)

Using a description of the variable z in spherical coordinates z = r0 cos θ exp(iφ), the square

of the sum can be rewritten as
∣

∣

∣

∣

∣

J
∑

l=0

exp(ikl/J)zlz′
J−l

∣

∣

∣

∣

∣

2

= r2J
0

J
∑

l=0

J
∑

l′=0

(cos θ)l+l′(cos θ′)2J−l−l′ei(l−l′)( k

J
+φ′−φ) . (3.14)

Now, we see that in the limit of J large we can improve the saddle point approximation

due to the extra powers of cos θ and cos θ′ in the numerator and denominator. First, the

angular integral will be maximized when both of the |z| take their maximum value on the

sphere. This implies that the integral localizes, both on numerator and denominator on a

particular diameter of the sphere, which is associated to null geodesics associated to the R

charge carried by Z. For these points, |~x − ~x′|2 reduces to |z − z′|2 = (2r0 sin (φ − φ′)/2)2,

where φ−φ′ is the angle along the circle by which the two locations on the sphere associated

to j and j′ differ by. This is the difference on the arguments of the two complex numbers

z and z′. Here we note that the directions associated to X and Y are orthogonal to

the difference between these eigenvalues, so this is self-consistent with comments made

previously.

Finally, the sum over relative phases in (3.14) can be approximated by a delta function

in the large J limit. Both in numerator and denominator, the phase difference φ − φ′ is

sharply peaked at k/J , because in the sum over phases the complex numbers align, while

for other values of the angle, one sums over a lot of unit complex numbers pointing in

all directions, which tend to cancel in the sum. From here, the effective energy of the

oscillators is sharply peaked at

〈Eosc〉 = 2

√

1 +
2g2

Y Mr2
0

π2
sin2(k/2J) , (3.15)

with the normalization of the wave function canceling between numerator and denominator.

Because the energy is sharply peaked the above state can be treated as an approximate

eigenstate of the full matrix model hamiltonian.

The geometrical interpretation of this result is as follows. We have two eigenvalues

on the sphere at a particular diameter, where the BPS null geodesics associated to the

BMN limit for the corresponding configuration are located. The quasi-momentum on the

BMN string, characterized by k/2J , translates to the angle on the sphere between the two

eigenvalues. The energy of the BMN impurities (the off-diagonal modes) is calculated by

the euclidean distance associated to the embedding of the five-sphere into a flat euclidean

6-dimensional geometry. This is shown in figure 2.
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0

i

2θ

r

j

0

θsin2 r

Figure 2: Geometry of the string bit between two eigenvalues, string bit shown in red. The angle

between the eigenvalues is θ = k/2J

The energy of the string bit can be characterized in terms of its kinetic energy (coming

from the free field N = 4 SYM result), plus the strong coupling mass term from the

interaction with the eigenvalue condensate. This mass term is proportional to |~xi−~xj| and

not to the angle that the two eigenvalues on the sphere form. In this sense, the string bit

leaves the sphere, but for small angle θ the effect is negligible.

Now we use the value of r0 calculated in the previous section, and we find a result

which is equal to

〈Eosc〉 = 2

√

1 +
g2
Y MN

π2
sin2(k/2J) . (3.16)

In the BMN limit where J is taken to be large, we need to also take k ∼ 2πn with n fixed.

The above result reduces to

〈Eosc〉 = 2

√

1 + g2
Y MN

(n

J

)2
. (3.17)

which matches exactly the BMN limit to all orders in perturbation theory 1. This should

be taken as evidence that the approximations done above are reasonable for these states.

Now we can try to compare our result (3.16) with some other conjectures in the lit-

erature. Indeed, we find that the above analytic formula is exactly the result of equation

(2.23) in [6] which is an ansatz for the energies of magnons in a long range spin chain for

an SU(2) subsector.

We also have to take into account that we have made various approximations to obtain

this result and to discuss their range of validity. By inspection, the geometry of the free

field string bits is not what one would expect from a semiclassical string embedded in the

S5, where the string bit energies should be measuring distances of curves tangent to the

sphere. This can be traced back to the fact that we treated the string bits as free fields.

Indeed, this approximation seems to be valid for the BMN limit, but should not be valid

for large angles on the sphere. One therefore expects that having a fixed number of free

string bits is going to be an incomplete picture of the string, and that one has to take

seriously the possibility that the number of string bits is not a constant of motion. This

1The normalization of g
2

Y M above is to be identified with 4πg in [4]
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seems to contradict the Bethe Ansatz conjectures of [6]. Indeed, the number of impurities

above the ground state is a conserved number in the Bethe Ansatz setup. However, we do

obtain the energies associated to the quasi momenta of the excitations exactly as described

by their conjecture. This suggests that the Bethe Ansatz conjecture is incomplete, but

at the same time it might be an intermediate step required to solve the full spectrum of

strings on AdS5 × S5. This deserves to be investigated further. Indeed, the Bethe-Ansatz

predicts integrability, but the converse is not generally true. As a counter-example, one can

consider the c = 1 string, which is integrable, and where the number of incoming particles

in the past is different than the number of outgoing particles in the far future.

4. Discussion

In this paper we have shown how the eigenvalue distribution picture describing BPS con-

figurations of N = 4 SYM together with the non-BPS off-diagonal modes can be used to

faithfully reproduce some precise geometrical calculations of strings moving in AdS5 × S5.

The main result of section 2 is that the exact value for the radius of the spherical

distribution of eigenvalues was calculated. This radius is
√

N/2 independently of the

dimension, i.e. independently of the number of matrices. This, that could seem unexpected

a first sight, seems like a coincidence that is necessary so that the matrix model can capture

the correct perturbative expansion of the field theory, where to leading order the number

of matrices/fields does not matter.

Then, we used a saddle point approximation for computing the energy of BMN states

to all orders in perturbation theory. We were able to obtain an exact agreement with

the string theory result [4] given the radius of the 2d-sphere (2.16) and the energy of

the off-diagonal modes (3.9). An interesting point about our results is the fact that the

wavefunction for the string bits becomes localized at a particular “classical” configuration

in the large J limit. This matches the intuition that J → ∞ is a semiclassical limit [11], and

that the spectrum of rapidly rotating strings in AdS5 × S5 can be obtained by quantizing

small perturbations around classical string solutions [12, 13].

A fundamental simplification in our computation came from treating the string bits as

modes of a free theory, which are geometrically understood as straight sticks connecting

two points on S5. This is a reasonable approximation, as long as one is working in the

strict BMN limit. In that case, the length of string bits associated to the off-diagonal modes

shrinks to zero in the large J limit and our calculations show that it is correct to consider

them as modes of a free theory. On the contrary, to consider finite J corrections (the

so-called near-BMN limit) one has to deal with string bits of finite length. A long string

bit connecting two points on the sphhere, and several string bits joining the same pair

of eigenvalues via intermediate points are configurations with similar energy in the strong

coupling limit, as the distance between the eigenvalues dominates the calculation of the

energy. It is natural to expect that all these states will mix with each other and the number

of string bits will not be a good quantum number 2. In other words, string bits between

2A simple model for variable number of string bits for open strings was found in [14] in the study of

giant graviton states
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eigenvalues separated by finite distance in the 5-sphere cannot longer be treated as modes

of a free theory. Taking this into account is necessary if one is interested in going beyond

the BMN limit, either by considering a finite J or a large number of BMN excitations. This

result seems to be in conflict with the conjectures of Beisert, Dippel and Staudacher [6].

We do seem to reproduce the magnon energy for the Bethe ansatz they have devised, at

the same time we find that the number of impurities above the Bethe ground state is not

conserved, and this appears to contradict the idea of building states using a generalized

algebraic set of raising operators as one would have on an algebraic Bethe ansatz approach.

This seems to agree with some observations of Minahan [17] regarding the non-closure of

the SU(2) sector at strong coupling. It is not clear if our result is in conflict with the

integrability of the string on AdS5 ×S5 [15, 16], and it is possible that our results coincide

with the one loop Bethe ansatz [18, 19] when we take the small ’t Hooft coupling limit.

Indeed, our formulas seem to be analytic in the ’t Hooft coupling for small coupling, a fact

that suggests that one can match the perturbation theory exactly if one works very hard.

This will require understanding 1/J corrections very precisely. On top of what we have

discussed above, another source of 1/J corrections in our calculation is the saddle point ap-

proximation itself, because we obtained the expectation value of the energies by replacing

a complicated integral that depended on J with an integral over a delta function distribu-

tion. The width of the correct distribution is related to J and could produce corrections

that need to be calculated. Calculating these corrections is interesting also because they

give rise to disagreements between string theory and gauge theory computations showing

up at three loops in perturbation theory [20 – 22]. It would be very interesting to see if the

discrepancies between string and gauge theory beyond the BMN limit can be overcome by

extending the ideas presented in this paper.

Finally, we should point out that our discussion centered on the scalar s-waves of

N = 4 SYM. To understand better the structure of the superconformal multiplets at

strong coupling, one would also want to do a similar analysis to the one we performed here

with the spinors and the the gauge fields, plus the additional partial waves of all these fields

on the sphere. This procedure might shed some light on how the different states mix, and

it is probably a required ingredient to understand the possible integrability of the N = 4

SYM spin chain at strong coupling.
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